
Appendix A. The NavalTrans Model

B.1. Overview
NavalTrans is an agent-based model, and it is developed on Eclipse, an open-source
integrated development environment (IDE), using Repast J agent modelling toolkit.
An instance of the model is composed of two main components; the model code, and
the parameter file. The model code depicts the actions of the actors, relations between
system elements, and general developments in the system. In other words, it depicts
the structure of the model. The parameter file is a conventional MS Excel file, which
contains the initial values of the model parameters that are needed to create an
instance of the model. This architecture brings ease and flexibility to experimentation
with NavalTrans: no programming skills are required in order to create different
instances of the model and conduct experiments, since creating a new parameter file
suffices for the task.

The model covers 2 naval transportation options (i.e. wind-powered sail-ships, and
steam-powered steam-ships), and the behaviour of 9 actor groups. 7 of these groups
are practitioner/user type of actors that constitute the demand-side of the
transportation system. The remaining two actor groups represent the provision side of
the system; i.e. provider-type actors.

In the following section, we will first introduce the objects, which are the basic pieces
of the model. Following that, the behaviour of the overall model, as well as the
objects will be discussed mainly using pseudocodes1 and time-sequence diagrams2.
When necessary, implemented functional relationships will be introduced in detail.
B.2. Object classes
Before directly going into the model discussion, some basic notions related to object-
oriented programming, and naturally to agent-based modelling, are introduced below.
Objects are the fundamental elements of an object-oriented program, and they can be
considered as distinct pieces of software that have a state description, and a set of

1 Pseudocode is a compact and informal high-level description of a computer programming algorithm
that uses the structural conventions of a programming language, but is intended for human reading
rather than machine reading.
2 Time-sequence diagrams demonstrate the flow of actions that take place during a particular time-step
(or an iteration) of the model run.

methods that depict the behaviour of the object. An object stores its state in fields
(variables in some programming languages) and exposes its behaviour through
methods (functions in some programming languages). Methods operate on an object's
internal state and serve as the primary mechanism for object-to-object interaction. In
an agent-based model, which is a special type of object-oriented program, each
individual agent in the model can be considered as an object, for example. However,
there may be other objects that are not agents, which are needed for the functioning of
the overall model.

A class corresponds to a general representation of a particular type of object. In other
words, it is the blueprint from which individual objects are created in the program.
Every object in the program is said to be an instance of a particular class. In an agent-
base model, there may be numerous consumer-agents. Each of these agents is an
object in the model, and the general description of a consumer is the consumer class.

 In NavalTrans there are 6 object classes. 4 of these classes directly correspond to the
concepts from the actor-option framework; option, actor, practitioner, and provider
classes. The other two classes are more operational, and are related to the functioning
of the overall model; model and oracle classes. We start with introducing these latter
two classes, and then we will introduce the others.

a. Controller class
The controller class is the main controller of NavalTrans. First of all, the controller is
responsible for creating an instance of NavalTrans. This involves initialization of the
agents based on the parameter file being used, and setting the simulation run length.
Secondly, the controller also controls the simulation schedule during a simulation run.
The simulation schedule is related to the order in which different agents will be
activated to perform their tasks in every simulation step. Finally, the controller class
is also responsible for collecting data from agents during a simulation run, and
displaying this data in the form of display surfaces and time-series plots.

There is only one instance of this class in NavalTrans.

b. Oracle class
As the name implies, the oracle class is related to information; it is the object that
knows everything when NavalTrans is to be initialized. This class establishes the link
between the model file and the parameter file. While initializing a particular instance
of NavalTrans, the oracle reads the values of the model parameters from the
parameter file, and reports these to the model object.

This class uses Apache POI HSSF libraries for reading data from MS Excel files.

There is only one instance of this class in NavalTrans.

c. Option class
The option class in NavalTrans corresponds to the naval transportation options
considered in the case study. This class describes the way an option will be
represented in the model (i.e. variables), as well as the mechanisms that alter the
properties of the options (i.e. methods).

The basic set of variables of the option class is as follows;
Variable name Short description

attrAct[i] Actual level for the attribute i
attrBase[i] Initial (base) level for the attribute i
attrBest[i] Technically feasible best level for the attribute i

attrEconScale[i] Whether the attribute i is influenced by economies-of-
scale, or not (binary variable)

attrTechDevFracNorm[i] Reference value of technical development fraction for
the attribute i

attrType[i] Type of the attribute i; indicates what type of
development mechanism is active on the attribute i

capaTotal Option’s total vessel capacity
scale Option’s recent scale of utilization

The basic set of methods3 of the option class is as follows;

Method name Short description
attrUpdate(.) Updates the attribute values of the option

updateStat(.) Updates the statistics related to the option, such as
utilization level, capacity-demand balance, etc.

There are two instances of the class in NavalTrans; sail-ship option, and steam-ship
option.

d. Actor class
The actor class defines social actors in general. Independent of being a demand-side,
or supply-side actor, the social actors share some basic characteristics in the way they
are conceptualized for this model. The actor class corresponds to this general
description of a social actor.

The basic set of variables of the actor class is as follows;

Variable name Short description

attrPerc[opt][prop4] The perceived level of the attribute prop of the option
opt

attrPerDelay Attribute perception delay of the actor
optScoreFunc Component value function
prior[obj] Priority of the objective obj
resource Total amount of resources controlled by the actor
resToOpt[opt] Resources allocated to the option opt
suppor[opt] Support of the actor to option opt
supShiftNormal Actor’s reference rate of support shift

The basic set of methods of the actor class is as follows;

Method name Short description

valueComponent(.) Assigns an assessment score to an option with respect
to a particular objective

valueDecision(.) Assigns a total assessment score to an option

3 The basic set includes the mechanism related to the behavior of the agents in the socio-technical
context. The methods related to the functioning of the program, such as the ones related inter-object
communication, data sorting, etc. are not discussed within the set of basic method for the sake of clarity
4 ith property of an option (i.e. opt=i) is related to the ith objective (i.e. obj=i) in the preference structure
of the actor

considering the scores assigned with respect to all
objectives

attrPercUpdate(.) Updates the attribute values perceived by the actor

e. Practitioner class
The practitioner class is a subclass of the actor class. In other words, a practitioner is a
special type of actor. It inherits all the variables and methods from the actor class, and
on top of those it has some others that differentiate it from other subclasses. As the
name implies, the practitioner class corresponds to the demand-side agents in the
NavalTrans model.

The basic set of variables of the practitioner class is as follows;

Variable name Short description

noSubType Number of different groups of practitioners to be
introduces

scaleShare[subType] The share of each practitioner group in the
transportation market

resGrowthPerc Growth percentage for practitioner resources

resToProv[prov][opt] Resources allocated to provider prov for transportation
via option opt

The basic set of methods of the practitioner class is as follows;

Method name Short description
supportUpdate(.) Update the actor’s support for different options
allocateRes(.) Allocate resources to existing providers and options

There are 500 instances of the class in NavalTrans. In other words, there are 500
practitioner agents in the model. The distribution of these agents according to the sub-
types is given below;

Practitioners/Users # of agents
Merchant – Type I 50
Merchant – Type II 50
Merchant – Type III 50
Merchant – Type IV 50
Government Postal Service 50
Luxury Passengers 50
Emigrants 200

f. Provider class
Similar to the practitioner class, the provider class is also a subclass of the actor class,
and inherits its variables and methods. This class corresponds to the supply-side
agents in NavalTrans.

The basic set of variables of the provider class is as follows;

Variable name Short description
capacity[opt] Total option opt capacity controlled by the agent
capaInv[opt] Capacity investment to option opt
capaLoss[opt] Capacity loss in option opt due to depreciation
resFromPrac[pract][opt] Resources received from practitioner pract related to

option opt

The basic set of methods of the provider class is as follows;

Method name Short description
supportUpdate(.) Update the actor’s support for different options

updateCapacity(.) Update the total capacity controlled by the agent related
to each option

updateCapaFree (.) Update the unused freight capacity after processing the
requests of the practitioner agents

updateResFromOpt(.) Update resources received from practitioners for each
option

There are 200 instances of the class in NavalTrans; i.e. 200 provider. The distribution
of these agents according to the sub-types is given below;

Providers #of agents
Individual Owners 150
Large Shipping Comp 50

B.3. Pseudocode of NavalTrans
The action flow in NavalTrans during a simulation run is presented by the following
pseudocode. The individual actions mentioned in this pseudocode are explained in the
following section.

Initialize the model instance {
Read the parameter file for parameter values
Create Npract number of practitioners
Create Nprov number of providers
Create Nopt number of options

}
Repeat until the time step is equal to the simulation final time {

Repeat until all practitioners are considered {
Randomly pick one practitioner agent

 Ask the agent to perform the following {
 Assess the available options (valueDecision)

Update perceived information (attrPercUpdate)
 Update utilization of the options (supportUpdate)
 Allocate resources to the options (allocateRes)

}
}
Repeat until all providers are considered {

Randomly pick one provider agent
 Ask the agent to perform the following {
 Assess the available options (valueDecision)
 Update perceived information (attrPercUpdate)
 Update the demand received (updateResFromOpt)
 Update investment for the options (supportUpdate)

}
}
Repeat until all options are considered {

Randomly pick one option
 Ask the object to perform the following {
 Update the option properties (attrUpdate)
 Update the statistic (updateStat)

}
}

}
End simulation

B.4. Description of the agent actions

a. Practitioner actions

i. valueDecision(.)
Calculates a preliminary assessment value for all options by calculating a weighted
average of its properties, as the actor knows them;

€

valueDecPrelopt = priorobj × attrPercopt,obj
obj
∑ [B.01]

Then these preliminary assessment values are normalized based on the best option in
the system according to the agent;

€

valueDecBest = max
opt

(valueDecPrelopt) [B.02]

€

valueDecopt =
valueDecPrelopt
valueDecBest

 [B.03]

ii. attrPercUpdate(.)
It is assumed that the learning takes place mainly through exogenous information
sources, and the pace of learning is proportional to the imperfection in the actor’s
perception about a certain property of an option. According to this assumption, the
perception of an actor regarding each property of each option is updated as follow;

€

attrPercopt ,prop (step) = attrPercopt,prop (step−1) + correctionTerm(step) [B.04]

€

correctionTerm(step) =
attrActopt ,prop (step) − attrPercopt,prop (step)

attrPercDelay
 [B.05]

where step stands for the iteration step (or time-step) of the simulation.

iii. supportUpdate(.)
In NavalTrans, the support concept represents how much (in terms of percentages) of
its freight a merchant wishes to transport via a certain option, or which portion of an
emigrant group wishes to travel via a certain option, as already discusses in Chapter 9.
Based on this interpretation, an increase in the support for an option means a decrease
in the support of the other. The change in the actor’s support for an option is
formulated as follows;

€

supShiftopt1,opt2 =
A if valueDecopt1 > valueDecopt2
0 otherwise

"

$

 [B.06]

€

A = (valueDecopt1 − valueDecopt2) × supShiftNorm × supportopt2 [B.07]

€

supportopt1(step) = supportopt1(step− 1) + supShiftopt1,opt2 [B.08]

iv. allocateRes(.)
Allocation of resources corresponds to allocation of the freight that needs to be
transported to the available ships according to the current support levels of the actor
(i.e. desired allocation of freight among transportation options), in the case of a
merchant. In that respect, the workflow in this method is given in the following
pseudocode;

Repeat for each option {
Calculate the freight aimed to be transported using the option (resDes)
Repeat until either all freight is assigned, or all providers are considered {

 Randomly select5 a provider agent
 Ask for the free capacity controlled by the provider
 Assign freight to the provider according to the free capacity
 Ask the provider agent to update the free capacity it controls
 Update the amount of freight that needs to be transported

}
If there is still some unassigned freight, register it as surplus

}

If the surplus for an option is positive, this indicates that the actor could not find
enough free capacity in order to realize the desired allocation of the freight among
available options. For example, a merchant might have wanted to ship 50 tons via
steam-ships. However, if the agent can only find free capacity for 30 tons on the
steam-ships available in the market, then the surplus for steam-ship option will be 20
tons this practitioner agent. If this is the case, the agent tries to ship its freight through
the other option. In this particular example, the merchant looks for free capacity of 20
tons on sail-ships.

Repeat for each option{
 Allocate the surplus to the other option
 If there is still some surplus, register the surplus as failed shipment
}

b. Provider actions

i. valueDecision(.)
The action is identical to the one discussed above for the practitioner agents.

ii. attrPercUpdate(.)
The action is identical to the one discussed above for the practitioner agents.

iii. updateResFromOpt(.)
The provider agent registers the total demand received from the practitioner agents for
each type of ship the provider operates. For the provider with the index prov, the
calculation is performed as follow;

€

resFromOptopt = resToOptpract,prov,opt
pract=1

N pract

∑ for opt = sail, steam}{ [B.09]

5 The practitioner first randomly selects among the providers with whom it did business in the past, and
then starts randomly picking out of remaining providers.

iv. supportUpdate(.)
In NavalTrans, the support concept represents how much (in terms of percentages) of
its capacity investment resources a ship-owner wishes to allocate to a certain option
(e.g. how many of the newly ordered ships will be sail-ships?). The formulation used
for representing changes in this support allocation is identical to the formulation given
in Equations B.06 through B.08.

Once the new support levels are determined, the provider agent calls for the
updateCapacity(.) method. This method updates the shipping capacity controlled by
the provider agent in both options. The method works as follow;

€

resTotal = resFromOptopt
opt= sail,steam{ }
∑ [B.10]

€

capaInvTotal = capaInvFrac × resTotal [B.11]

repeat for each option{

€

capaLossopt =
capaTotalopt
capaLifeopt

 [B.12]

€

capaInvopt = capaInvTotal × supportopt [B.13]

€

capaTotalopt (step) = capaTotalopt (step −1) + capaInvopt − capaLossopt [B.14]
}

c. Option actions

i. attrUpdate(.)
The method updates the properties (i.e. attributes) of the options.

€

attrDevFracprop = attrDevFracNormprop × eff1 × eff2 [B.15]

where eff1 stands for the effect of investment flows on attribute development, and eff2
stands for the effect of market-share loss on attribute development (related to ‘fight-
back’ or ‘sail-ship’ effect)

€

eff1 = f(capaInvFracAvg
capaInvFracRef

) [B.16]

capaInvFracAvg is the ratio of total capacity investments made for an option in a
decision round to the existing total capacity of the option in the market.
capaInvFracRef is the investment fraction that is required to compensate the capacity
loss due to depreciations. The function f(.) is defined as follows;

Figure B.1. The effect of investment flows on attribute development

€

eff2 = g(supPractChgAvg
supPractChgRef

) [B.17]

where supPractChgAvg is the average change in the support (i.e. demand) for the
option in the market, and supPractChgRef is the reference value for that, which can
be considered as normal. In the base version of the model a 2% market share loss is
considered as acceptable (i.e. supPractChgRef=-0.02). The function g(.) is defined as
follows;

Figure B.2. The effect of market-share loss on attribute development

Using the attrDevFrac calculated in this way, the new level of the attribute is
calculated as follows;

€

attrprop (step) = attrBestprop − attrprop (step −1)()attrDevFrac [B.18]

ii. updateStat(.)
This method calculates statistics about the whole market for the option by collecting
demand-side data from individual practitioners, and supply-side data from individual
providers. The method works as follows;

Repeat for every practitioner agent{
Get the following information from the practitioner agent{

 Assessment score of the agent for the option
 The demand that the agent wanted to transport via the option

 The demand that the agent actually could transport via the option
 Total demand of the agent

}
}

Repeat for every provider agent{

 Get the following information from the provider agent{
 Vessel capacity controlled by the agent
 Total investment resources of the agent
 Capacity investments of the agent for the option

}
}

Using the collected information, the method calculates market-level indicators such as
average assessment score for the option, average investment fraction to an option,
demand-supply balance in the market, etc.
B.5. Parameter file
The parameter file consists of three sections corresponding to the practitioner agents,
provider agents, and the options. Figure B.3 through B.5 are examples of these
sections from a parameter file used for one of the experiments. A new provider or
practitioner type can be added to the mode just by adding the corresponding rows to
the parameter file. Same holds for introducing a new option to the model.
Disp_Factor_XX columns in the practitioner and provider sections are related to the
dispersion of the agents in the related issue. For example, a high Disp_Factor_Res
indicates that the model will create agents highly heterogeneous in terms of the
amount of resources they control. If the factor is set to 0, all agents will be initialized
identical.

Figure B.3. Section of the parameter file related to the practitioners

Figure B.4. Section of the parameter file related to the providers

Figure B.5. Section of the parameter file related to the options

